
GPU Accelerated Backtesting and ML for

Quant Trading Strategies

GTC 2015 | San José | California

Dr. Daniel Egloff

daniel.egloff@quantalea.net

March 18, 2015

Motivation

 Goals

– Execute automated algorithmic trading strategies

– Optimize risk return

 Procedure

– Extract signals and build price forecasting indicators from market data

– Transform indicators into buy / sell decisions

– Apply portfolio risk management

 Challenges

– Find relevant signals and indicators

– Engineer and parameterize trading decision

– Find optimal parameters

 Approach

– Exploit parallelism in the computations

– Accelerate calculations by using a GPU cluster

Algo Trading Strategies

Market data

Input

Trading decision

Mathematical

operations

Output

Configurations

Rules

Example

fast moving
average

slow moving
average

Buy signal Sell signal

Markets

 Futures market

– CME 50 liquid futures

– Other exchanges

 Equity markets

– World stock indices

 FX markets

– 10 major currency pairs

– 30 alternative currency pairs

 Options markets

– Options on futures

– Options on indices

Strategy Universe

Configuration c Trading decision s(c)

1

-1

buy

sell

Utility U(s(c))

P&L / drawdown

Strategy
configurations

Strategy Engineering

Challenge 1: How can we engineer a strategy

producing buy / sell decisions ?

Random Forests

Fi < ti

Fj < tj Buy

Buy

Fi < ti

Sell Fk < tk

Sell

Fi < ti

Fi < ti

Buy Fk < tk

Fi < ti

Fj < tj Sell

Fi < ti

Sell

Buy

Sell Buy

Sell Buy

Sell Buy

Sell Buy

Random Forests

Strategy configuration c

Features Random forest

Trading decision s(c)

1

-1

buy

sell

Training Random Forests

Bootstrapping to create training sets

C 4.5 algorithm for individual tree construction

 Selecting subset of features for tree construction

 Each node is associated with a subset of training samples

 Recursive, starting at the root node

 At each node execute divide and conquer algorithm to find locally
optimal choice

– If samples are in same class (or few class) node is a leaf associated
with that class

– If samples are in two or more classes

 Calculate information gain for each feature

 Select feature if largest information gain for splitting

Entropy

𝑇 = set of samples associated with node

𝐶1, … , 𝐶𝑛= classes of samples

Entropy

𝐸𝑛𝑡 𝑇 = − 𝑖=1
𝑛 𝑓𝑟𝑒𝑞(𝐶𝑖,𝑇)

𝑇
𝑙𝑜𝑔2

𝑓𝑟𝑒𝑞(𝐶𝑖,𝑇)

𝑇

 Characterizes impurity of samples

 Measure of uncertainty

 Additive: impurity of several subsets is

sum of impurities

Information Gain

𝑇1, … , 𝑇𝑠 = subsets of 𝑇 generated by splitting on selected attribute

Information gain discrete feature

𝑔𝑎𝑖𝑛 𝑇1, … , 𝑇𝑠 = 𝐸𝑛𝑡 𝑇 − 𝑖=1
𝑠 𝑇𝑖

𝑇
𝐸𝑛𝑡 𝑇𝑖

Information gain continuous feature with optimal splitting threshold

𝑔𝑎𝑖𝑛 𝑡 = 𝑔𝑎𝑖𝑛 𝑇≤𝑡 , 𝑇>𝑡

𝑡∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑔𝑎𝑖𝑛 𝑡

Actual implementation uses ratio information gain over split ratio

Training Individual Trees

Labels from positive or negative market returns

Selected

features

Permuted

labels

Label

Permutations

to

sort features

All features

Samples / observations

Training Individual Trees

Selected

features

Permuted

labels

Permutations

to

sort features

Weights
Permuted

weights

Permutations

to

sort features

Label

All features

2 0 1 4 0 2 ………

Training Individual Trees

Entropy criterion for
best feature and split

Entropy for

every split

Permuted

labels
Permuted

weights 2. Optimal
feature Fi

1. Optimal split ti

Fi < ti

Training Individual Trees

Recursively refine classification: mask data according to classification

Selected

features

Permuted

labels

Label

Permutations

to

sort features

Weight
Permuted

weights

Permutations

to

sort features

Training Individual Trees

Features
Permuted

labels

Label

Permutations

to

sort features

Weight
Permuted

weights

Permutations

to

sort features

Recursively refine classification: mask data according to classification

GPU Implementation

 Parallelism at multiple levels

– Multiple trees, one for each set of weights

– Independent features

– Independent split points

– Multiple nodes further down the tree

 GPU kernels can be implemented with standard primitives

– Random number generation for weights

– Parallel scan (cumulative sum)

– Parallel map

– Parallel reduction to find optimal feature and split

Speedup

0

10

20

30

40

50

60

20 50 100 20 50 100 20 50 100 20 50 100

1 2 4 8

20000

50000

100000

Depth

Features

Samples

Strategy Backtesting

Challenge2: How to choose best trading

strategy ?

Walk Forward Optimization

In sample Out of sample

3-6 months 1 month

In sample Out of sample

In sample Out of sample

shift by 1 month

Trading P&L

Market returns r(ti)

r(ti) = log(P(ti) / P(ti-1))

ti-1 ti

P(ti-1)

P(ti)

r

Trading decision s(c)

P&L(c) = <s(c), r>

r r r r

1 -1 1 1 -1

…..

…..

…..

…..

Market prices Market returns

time

Optimal Configuration

s(c)

s(c)

r

s(c)

s(c)

s(c)

s(c)

s(c)

s(c)

P&L

=

Configurations

pick configuration with largest P&L

x

Bootstrapping Trading P&L

s(c)

s(c)

r

s(c)

s(c)

s(c)

s(c)

s(c)

s(c)

P&L

=

Configurations

pick configuration with largest P&L

x

w w w w

x

x

x

x

x
ww

Weights

r .* w

Hypothesis Tests

Null Hypothesis

Trading P&L<= 0

Alternative Hypothesis

Trading P&L > 0

Trading P&L Distribution

optimal configurations
for each weight

c* for w = 1

p-value for test 0

P&L

x

x

x

x

x

x

White Reality Check

 Scale exposure according to distance from 0

 Do not trade if negative returns

c* for w = 1

0
p-value

c* for w = 1

0
p-value

Market 1 Market n……

GPU Implementation

 Parallelism at multiple levels

– Multiple markets

– Independent in-sample / out-of-sample windows

– Independent strategy configurations

– Independent time steps for utility functions such as mean return

 GPU kernels can be implemented with standard primitives

– Random number generation

– Matrix multiplication (almost, up to return vector scaling the weights)

– Parallel reduction

GPU Implementation

 GPU grid

– Multiple markets

– Independent in-sample / out-of-sample windows

 Per GPU

– Independent strategy configurations

– Independent time steps for utility functions such as mean return

Dr. Daniel Egloff

daniel.egloff@quantalea.net

March 18, 2015

Questions ?

