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Motivation

 Goals 

– Execute automated algorithmic trading strategies

– Optimize risk return 

 Procedure

– Extract signals and build price forecasting indicators from market data

– Transform indicators into buy / sell decisions

– Apply portfolio risk management

 Challenges

– Find relevant signals and indicators

– Engineer and parameterize trading decision 

– Find optimal parameters 

 Approach

– Exploit parallelism in the computations 

– Accelerate calculations by using a GPU cluster
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Markets

 Futures market

– CME 50 liquid futures 

– Other exchanges

 Equity markets

– World stock indices

 FX markets

– 10 major currency pairs

– 30 alternative currency pairs

 Options markets

– Options on futures

– Options on indices



Strategy Universe

Configuration c Trading decision  s(c)

1

-1

buy

sell

Utility U(s(c))

P&L / drawdown

Strategy 
configurations



Strategy Engineering

Challenge 1: How can we engineer a strategy 

producing buy / sell decisions ?



Random Forests

Fi < ti

Fj < tj Buy

Buy

Fi < ti

Sell Fk < tk

Sell

Fi < ti

Fi < ti

Buy Fk < tk

Fi < ti

Fj < tj Sell

Fi < ti

Sell

Buy

Sell Buy

Sell Buy

Sell Buy

Sell Buy



Random Forests 
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Training Random Forests

Bootstrapping to create training sets

C 4.5 algorithm for individual tree construction

 Selecting subset of features for tree construction 

 Each node is associated with a subset of training samples

 Recursive, starting at the root node

 At each node execute divide and conquer algorithm to find locally 
optimal choice

– If samples are in same class (or few class) node is a leaf associated 
with that class

– If samples are in two or more classes 

 Calculate information gain for each feature

 Select feature if largest information gain for splitting



Entropy

𝑇 = set of samples associated with node 

𝐶1, … , 𝐶𝑛= classes of samples 

Entropy  

𝐸𝑛𝑡 𝑇 = − 𝑖=1
𝑛 𝑓𝑟𝑒𝑞(𝐶𝑖,𝑇)

𝑇
𝑙𝑜𝑔2

𝑓𝑟𝑒𝑞(𝐶𝑖,𝑇)

𝑇

 Characterizes impurity of samples

 Measure of uncertainty  

 Additive: impurity of several subsets is 

sum of impurities



Information Gain

𝑇1, … , 𝑇𝑠 = subsets of 𝑇 generated by splitting on selected attribute

Information gain discrete feature

𝑔𝑎𝑖𝑛 𝑇1, … , 𝑇𝑠 = 𝐸𝑛𝑡 𝑇 −  𝑖=1
𝑠 𝑇𝑖

𝑇
𝐸𝑛𝑡 𝑇𝑖

Information gain continuous feature with optimal splitting threshold

𝑔𝑎𝑖𝑛 𝑡 = 𝑔𝑎𝑖𝑛 𝑇≤𝑡 , 𝑇>𝑡

𝑡∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑔𝑎𝑖𝑛 𝑡

Actual implementation uses ratio information gain over split ratio



Training Individual Trees
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Training Individual Trees
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Training Individual Trees

Entropy criterion for 
best feature and split 
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Training Individual Trees

Recursively refine classification: mask data according to classification 

Selected 

features

Permuted 

labels

Label

Permutations 

to 

sort features

Weight
Permuted 

weights

Permutations 

to 

sort features



Training Individual Trees
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GPU Implementation

 Parallelism at  multiple levels

– Multiple trees, one for each set of weights

– Independent features

– Independent split points

– Multiple nodes further down the tree

 GPU kernels can be implemented with standard primitives

– Random number generation for weights

– Parallel scan (cumulative sum)

– Parallel map

– Parallel reduction to find optimal feature and split
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Strategy Backtesting

Challenge2: How to choose best trading 

strategy ?



Walk Forward Optimization
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Trading P&L

Market returns r(ti)  

r(ti) = log(P(ti) / P(ti-1))
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Optimal Configuration
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Bootstrapping Trading P&L
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Hypothesis Tests

Null Hypothesis

Trading P&L<= 0

Alternative Hypothesis

Trading P&L > 0



Trading P&L Distribution 
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White Reality Check

 Scale exposure according to distance from 0

 Do not trade if negative returns

c* for w = 1

0
p-value

c* for w = 1

0
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Market 1 Market n……



GPU Implementation

 Parallelism at  multiple levels

– Multiple markets

– Independent in-sample / out-of-sample windows

– Independent strategy configurations

– Independent time steps for utility functions such as mean return 

 GPU kernels can be implemented with standard primitives

– Random number generation

– Matrix multiplication (almost, up to return vector scaling the weights)

– Parallel reduction



GPU Implementation

 GPU grid

– Multiple markets

– Independent in-sample / out-of-sample windows

 Per GPU

– Independent strategy configurations

– Independent time steps for utility functions such as mean return 
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